If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+8n-11=0
a = 3; b = 8; c = -11;
Δ = b2-4ac
Δ = 82-4·3·(-11)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-14}{2*3}=\frac{-22}{6} =-3+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+14}{2*3}=\frac{6}{6} =1 $
| 1=4d−11 | | 50,000-d=238,900 | | -11+5=-3(x+7) | | x+18+x+20=90 | | 2x-14-3=13 | | 2x–3.12=5.24* | | 3(x+2)+2=2(x+4)+x | | 7x-5x-3=5 | | 10x-7=-4x+5 | | 2n=5^n | | 3x+8=-4x+13 | | 20+30+7x-5=180 | | 3x-4+14=x | | 5X=12-y | | 7x+14=34 | | 7x-21=-63 | | 3(d+12)=8-4 | | 20+30+7x-5=90 | | 5m+8+5(2m-4)-4(m+4)=0 | | -4+6=0.5(x+30) | | 4x+62=3x-153 | | 47.50x=390+17.50 | | -0.5(10^(2))+40(10)-350=x | | 5x+-12=8 | | 2.7(-4.5=3.6c-9 | | 2+3(4÷x)=1-5(6-x) | | 180=28x-7+24x+18 | | 6y+3=y-17 | | 2x+12=-32 | | p4−1=2 | | (4x-5)=(97-2x) | | 9x+3=10x+10 |